ENVIRONMENTAL PRODUCT DECLARATION

as per /ISO 14025/ and /EN 15804/

Owner of the Declaration	SAINT-GOBAIN ADFORS CZ, s.r.o
Programme holder	Institut Bauen und Umwelt e.V. (IBU)
Publisher	Institut Bauen und Umwelt e.V. (IBU)
Declaration number	EPD-SGA-20190026-CBA1-EN
Issue date	25/06/2019
Valid to	24/06/2024

ADFORS GlasGrid[®] (0,30 kg/m²) SAINT-GOBAIN ADFORS CZ, s.r.o.

www.ibu-epd.com / https://epd-online.com

General Information

SAINT-GOBAIN ADFORS CZ, s.r.o.	ADFORS GlasGrid [®]				
Programme holder	Owner of the declaration				
IBU - Institut Bauen und Umwelt e.V.	SAINT-GOBAIN ADFORS CZ, s.r.o.				
Panoramastr 1	Sokolovská 106				
10178 Berlin	Litomyšl				
Germany	570.01				
Ocimany	Czech Republic				
	0200111000000				
Declaration number	Declared product / declared unit				
EPD-SGA-20190026-CBA1-EN	1 m ² of ADFORS Glasgrid® for asphalt reinforcemen				
	with the grammage of 0,30 kg/m ² .				
	This EPD declares a specific product from the manufacturer's plant.				
This declaration is based on the product	Scope:				
category rules:	This document refers to the manufacture of Glasgrid				
Reinforcing and securing systems made from glass fibre	for asphalt reinforcement by SAINT-GOBAIN ADFOR				
composite materials, 04.2018	CZ s.r.o. This product is produced in the manufacturin				
(PCR checked and approved by the SVR)	plant in Litomyšl in the Czech Republic, in which the				
· · · · · ·	production data for 2017 was recorded. This EPD				
Issue date	declares the life cycle analysis (LCA) for a specific				
25/06/2019	product.				
Valid to	The owner of the declaration shall be liable for the				
24/06/2024	underlying information and evidence; the IBU shall no				
24/00/2024	be liable with respect to manufacturer information, life				
	cycle assessment data and evidences.				
	Verification				
12MA PARA RUDAT	The standard /EN 15804/ serves as the core PCR				
o v v v v v v v v v v v v v v v v v v v	Independent verification of the declaration and data				
	according to /ISO 14025:2010/				
Prof. DrIng. Horst J. Bossenmayer	internally x externally				
(President of Institut Bauen und Umwelt e.V.)					
As a alton					
along parts	()3/				
Dr. Alexander Röder	Vito D'Incognito				
(Managing Director IBU)	(Independent verifier appointed by SVR)				

Product

Product description / Product definition

ADFORS GlasGrid[®] Full Lane Width Pavement Reinforcement System is a high strength, open fiberglass grid custom knitted in a stable construction and coated with a patented elastomeric polymer and self-adhesive glue. Every component of the matrix shall be stabilized against ultraviolet degradation and inert to chemicals normally found in a natural soil environment.

For the placing on the market of the product in the EU/EFTA (with the exception of Switzerland) Regulation (EU) No. 305/2011 (CPR) applies. The product needs a declaration of performance taking into consideration /EN 15381:2008/, and the CE-marking. For the application and use the respective national provisions apply.

Application

The ADFORS GlasGrid® product line offers several styles of pavement reinforcement grids designed to reinforce asphalt concrete overlays. They retard

reflective cracking by a factor of 2 to 3 times by turning crack stresses horizontally to dissipate the stress. The grid configuration features fiberglass strands coated with an elastomeric polymer. Each strand has a high tensile strength, as well as a high modulus of elasticity at low elongation – making ADFORS GlasGrid® stronger than steel by weight. ADFORS GlasGrid® has been proven effective in all climates and geographic areas, performing equally well in desert conditions and in near arctic regions that are subject to intense cold and seasonal temperature fluctuations.

Technical Data

ADFORS GlasGrid[®] GG Full Lane Width Pavement Reinforcement meets the requirements of /EN 15381/. ADFORS GlasGrid[®] is a high strength, open fiberglass grid custom knitted in a stable construction and coated with a patented elastomeric polymer and self-adhesive glue. Every component of the matrix shall be stabilized

against ultraviolet degradation and inert to chemicals normally found in a natural soil environment.

Constructional Data

Name	Value	Unit
Ultimate strength (MD / CMD) (/EN-ISO 10319/)	115 / 115	kN/m
Ultimate tensile elongation (MD (/EN-ISO 10319/)	2,5 / 2,5	%
Tensile resistance @ 2% strain (/EN-ISO 10319/)	95 / 95	kN/m
Secant stiffness EA @ 1% strain (/EN-ISO 10319/)	4600 / 4600	N/mm
Young's Modulus E	73	GPa
Melting point of coating (/EN-ISO 3146/)	>232	°C
Melting point of glass Standard Test Method for Softening Point of glass /(ASTM C338)/	>820	°C

The product complies with /EN 15381:2008/ and has the declaration of performance.

performance data of the product in accordance with the declaration of performance with respect to its essential characteristics according to /EN 15381:2008/,

Base materials / Ancillary materials

ADFORS GlasGrid® glass fibre grids (0,24 kg/m² glassfibre knitted fabric and 0,06 kg/m² acrylic based coating) are produced in three main phases:

LCA: Calculation rules

Declared Unit

This declaration refers to the production of 1 m^2 of Glasgrid[®] fiberglass grid with the grammage of 0,30 kg/m².

Declared unit

Name	Value	Unit
Declared unit	1	m^2
Grammage	0,30	kg/m^2
Conversion factor to 1 kg	3.33	-

System boundary

It represents a "cradle-to-gate" EPD with the options.

The following life cycle stages are considered: **Production** A1-A3 – Raw material supply, transport and manufacturing

LCA: Scenarios and additional technical information

The following technical information is the basis for the declared modules.

Transport from the gate to the site (A4)

Name	Value	Unit
Litres of fuel	0.00171	l/100km
Transport distance	900	km
Capacity utilisation (including empty runs)	85	%

• In the first phase, glass fibres are produced by melting of input materials followed by drawing and coiling. E (Eutal type) glass is used for the purpose of mesh fabric production in accordance with /DIN 1259-1/ -due to the strength characteristics maintained also following exposure to alkaline substances included in façade systems.

• The second production phase consists of glass-fibre knitting, where "greige fabrics" is produced.

• The third phase is the hardening process, in which a finishing layer is applied to the greige fabric. There are two purposes for the finish:

Fabric fixation for its easy use and workability.
Fabric compatibility with asphalt.

The fabric does not contain any substances of very high concern (SVHC).

Reference service life

The reference service life (RSL) is not declared. A calculation according to /ISO 15686/ is not applied.

Installation

A4 – Transport to building site A5 – Initial installation into building (including packaging waste processing) End-of-life

C2 – Transport to waste processing,

C4 – Disposal (landfilling) Benefits and loads beyond the product system boundary

D - Reuse-, recovery- or recycling- potential

Comparability

Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

. GaBi ts serves as background database for the calculation /GaBi ts/.

Installation in the building (A5)

The following packaging materials are considered on construction site:

Name	Value	Unit
PE stretch film (40 MJ/kg*)	0,001	kg/m²
Wooden pallet (12 MJ/kg*)	0,01	kg/m²
* Heating value		

* Heating value

The amount of installation waste is not declared in this EPD. For calculation of the environmental impact of the product including installation waste, the values for

the production stage (A1-A3) and end of life (C4, D) have to be multiplied with the amount of waste (e.g. 2% installation waste, factor 1.02)

End of life (C1-C4)

Name	Value	Unit
Collected as mixed construction	0.3	ka
waste	0.5	ĸġ
Landfilling (100% scenario)	0.3	kg
Transport to End of life (C1)	50	km
Capacity utilisation (including empty runs)	85	%
Litres of fuel (per kg cargo)	0,00171	l/100 km

Reuse, recovery and/or recycling potentials (D), relevant scenario information For module D the potential benefits given in module A5

For module D the potential benefits given in module A5 are declared. For waste incineration combustion in a WIP (R1 > 0.6) with energy recuperation is considered.

LCA: Results

The following table depicts the results of the indicators concerning the estimated impact, use of resources as well as waste and other output flows in relation to 1 m² of Glasgrid ® with the grammage of 0,3 kg/m². As End of life scenario (EoL) landfilling is considered in C4.

In the table "Description of the system boundary", all declared modules are indicated with an "X"; all modules that are not declared are indicated with "MND". As default the modules B3, B4, B5 are marked as MNR – module not relevant.

DESC	; RIP I	ION C	IHE	SYSI	EW B	OUND	ARY	(X = IN	CLU	UDF	:D IN	LCA;	MND =	MOL			-CL	ARED)								
PROE	PRODUCT STAGE CONSTRUCTI ON PROCESS STAGE USE STAGE END OF LIFE STAGE					GE	BEN BE` S BOI	EFITS AND LOADS YOND THE SYSTEM UNDARIES																		
Raw material supply	Transport	Manufacturing	Transport from the gate to the site	Assembly	Use	Maintenance	Repair	Replacement		Replacement Refurbishment		Replacement Refurbishment		Replacement Refurbishment		Replacement Refurbishment		Refurbishment Operational energy		Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-	Recovery- Recycling- potential
A1	A2	A3	A4	A5	B1	B2	B 3	B4	В	5	B6	B7	C1	C2	C3	C4		D								
Х	Х	Х	Х	Х	MND	MND	MNR	MNR	MN	١R	MND	MND	MND	Х	MND	Х		Х								
RESL	JLTS	OF TH	IE LCA	- EN'	VIRON	MENT	AL IN	ЛРАСТ	:1	m² /	ADFC	DRS GI	asGric	® wit	h the c	ramm	age	e of 0.3								
kg/m²	² for a	sphal	t reinf	orcem	ent											<u></u>										
			Param	leter				Unit		A 1	-A3	A4	A	.5	C2	C4	4	D								
		Glob	oal warmir	ng potent	ial			kg CO ₂ -E]	1.1	3E+0	1.69E-2	2 2.14	E-2	9.04E-4	4.46	E-3	-7.59E-3								
	Depletic	n potenti	al of the s	tratosphe	ric ozone	layer	[k	g CFC11-	<u>=q.]</u>	8.44	E-15	4.23E-1	8 5.64	E-18	2.27E-19	2.59E	-17	-9.36E-17								
	A	Fut	1 potential	n notenti:	nd water al		[k	rg SU ₂ -E0		4.4	0E-3 6F-4	1.07E-5	2.36E-6		3.79E-0	2.08	E-0 E-6	-1.19E-5								
Format	ion poter	ntial of tro	pospheric	c ozone p	hotochem	nical oxida	ants [k	a ethene-F	- <u>4.</u>] -a.1	2.9	6E-4	-2.59E-	5 1.67	'E-7	-1.39E-6	2.05	E-6	-9.81E-7								
	Abiotic	depletion	potential	for non-fo	ssil resou	irces		[kg Sb-Eq	.]	2.22E-5		1.49E-9	-9 2.36E-10		7.98E-11	1.64	E-9	-1.26E-9								
	Abiot	ic depleti	on potenti	al for foss	sil resouro	es		[MJ]		1.8	3E+1	2.30E-1	4.26	6E-3	1.23E-2	6.25	E-2	-1.10E-1								
RESL aspha	JLTS (alt rei	OF TH	IE LC <i>A</i> ement	A - RE	SOUR	CE US	E: 1 ı	n² ADF	OR	SG	lasG	irid® w	ith the	gran	nmage	of 0,3	kg/	m² for								
			Parar	neter				Unit	A	1-A3		A4	A5		C2	C4		D								
	Rer	newable p	primary er	nergy as e	energy ca	rier		[MJ]	1.6	8E+C	IND		1.21E-1		IND	8.19E	-3	IND								
Re	newable	e primary	energy re	SOURCES a	as materia	al utilizatio	n	[MJ]	1.2	20E-1		IND 38E 2	-1.20E-	1		0.00E	+0 2									
	Non-r	enewable	ewable p	enerav as	s enerav o	arrier		[MJ]	1.0	6F+1		.30L-2	9.39L-	+ / 2	IND	3.06E-	+0	-2.44L-2								
	Non-rer	newable p	primary er	nergy as r	naterial ut	ilization		[MJ]	3.0	4E+0)	IND	-4.00E-	2	IND	-3.00E	+0	IND								
	Total use	e of non-i	enewable	e primary	energy re	sources		[MJ]	2.0	6E+1	2	.32E-1	4.71E-	3 1	.24E-2	6.47E	-2	-1.34E-1								
		Use	e of secon	dary mat	erial			[kg]	0.0	0E+C	0	.00E+0	0.00E+	0 0	.00E+0	0.00E-	+0	0.00E+0								
	Use of renewable secondary fuels		se of renewable secondary fuels			[MJ]	0.0	0E+0		.00E+0	0.00E+		.00E+0	0.00E	+0	0.00E+0										
	Ľ		se of net	fresh wat	er	>		[IVIJ] [m ³]	3.6	NETU	2	.00E±0 23E-5	5.06E-	5 1	.00E+0 24F-6	1.63E	-5	-2.87E-5								
RESI						FL OW			STE		TEG		•			1.002	•	2.07 2 0								
1 m ²	ADFO	RS G	asGri	d® wit	h the	aramn	nade	of 0.3	ka/n	n² f	or as	phalt r	einford	eme	nt											
			Parar	neter				Unit	A	1-A3		A4	A5		C2	C4		D								
Hazardous waste disposed					[kg]	1.2	23E-8	1	.29E-8	4.49E-1	2 6	90E-10	1.10E	-9	-5.43E-11											
Non-hazardous waste disposed					[kg]	5.9	2E-2	1	.95E-5	1.37E-	4 1	.05E-6	3.00E	-1	-5.38E-5											
Radioactive waste disposed					[kg]	9.3	32E-4	4	.74E-7	1.80E-	7 2	2.54E-8	8.67E	-7	-9.72E-6											
		<u> </u>	omponent	ts for re-u	se			[Kg]	0.0			.00E+0	0.00E+		.00E+0	0.00E	+U +0	0.00E+0								
		Mate	rials for er	nerav rec	iy overv			[ka]	0.0	0E+0		.00E+0	0.00E+		.00E+0	0.00E	+0	0.00E+0								
<u> </u>		Exp	orted ele	ctrical ene	ergy			[MJ]	0.0	0E+0	0	.00E+0	2.88E-2	2 0	.00E+0	0.00E	+0	0.00E+0								
		Ex	ported the	ermal ene	rgy			[MJ]	0.0	0E+0	0	.00E+0	6.38E-	2 0	.00E+0	0.00E-	+0	0.00E+0								

References

/ASTM C338/

Standard Test Method for Softening Point of Glass.

/CPR/

Regulation (EU) No. 305/2011 Construction Product Rule (CPR)

/EN 15381:2008/

Geotextiles and geotextile-related products. Characteristics required for use in pavements and asphalt overlays

/EN-ISO 10319/ Geosynthetics - Wide-width tensile test

/EN-ISO 3146/

Plastics - Determination of melting behaviour (melting temperature or melting range) of semi-crystalline polymers by capillary tube and polarizing-microscope methods

/DIN 1259-1/

Terminology for glass types and groups

/IBU 2016/

IBU (2016): General Programme Instructions for the Preparation of EPDs at the Institut Bauen und Umwelt e.V., Version 1.1 Institut Bauen und Umwelt e.V., Berlin.

www.ibu-epd.de

/ISO 14025/

DIN EN /ISO 14025:2011-10/, Environmental labels and declarations — Type III environmental declarations — Principles and procedures

/EN 15804/

/EN 15804:2012-04+A1 2013/, Sustainability of construction works — Environmental Product

 $\ensuremath{\mathsf{Declarations}}$ — Core rules for the product category of construction products

/PCR guideline texts for building-related productsand services (PCR)/

Part A: Calculation rules for the Life Cycle Assessment and Requirements on the Background Report, Version 1.2, Institut Bauen und Umwelt e.V., www.bau-umwelt.com, 2017

Part B: Requirements on the EPD for reinforcing and securing systems made from glass fibre composite materials, Version 1.6, Institut Bauen und Umwelt e.V., www.bau-umwelt.com, 2017

/GaBi ts/

Software & Documentation

Data base for comprehensive analysis LBP, University of Stuttgart and thinkstep AG, Documentation of GaBi data sets

http://www.gabisoftware.com/international/databases/, 2018

Institut Bauen und Umwelt e.V.	Publisher Institut Bauen und Umwelt e.V. Panoramastr. 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 3087748- 0 +49 (0)30 3087748- 29 info@ibu-epd.com www.ibu-epd.com
Institut Bauen und Umwelt e.V.	Programme holder Institut Bauen und Umwelt e.V. Panoramastr 1 10178 Berlin Germany	Tel Fax Mail Web	+49 (0)30 - 3087748- 0 +49 (0)30 - 3087748 - 29 info@ibu-epd.com www.ibu-epd.com
thinkstep	Author of the Life Cycle Assessment thinkstep AG Hauptstraße 111- 113 70771 Leinfelden-Echterdingen Germany	Tel Fax Mail Web	+49 711 341817-0 +49 711 341817-25 info@thinkstep.com http://www.thinkstep.com
ADFORS SAINT-GOBAIN	Owner of the Declaration SAINT-GOBAIN ADFORS CZ s.r.o. Sokolovská 106 57001 Litomyšl Czech Republic	Tel Fax Mail gobair Web	+420461651111 +420461612769 michal.doubrava@saint- .com www.adfors.com